
Apache DataFusion: Design
Choices when Building Modern

Analytic Systems
Boston University

Data System Seminar: October 28, 2024

Andrew Lamb
Staff Engineer @ InfluxData

Apache {DataFusion, Arrow} PMC

Andrew Lamb
Staff Engineer

InfluxData

> 20 21 😱years in enterprise software
development

Oracle: Database (2 years)

DataPower: XSLT compiler (2 years)

Vertica: DB / Query Optimizer (6 years)

Nutonian/DataRobot: ML Startups (7 years)

InfluxData: InfluxDB 3.0, Arrow, DataFusion
(4 years)

Goal

Content: Case Study of Choices in Apache DataFusion Query Engine

- Exposure to important aspects of analytic query engines
- Introduction to currently important technologies

Convince you to build with / contribute to the building blocks:

● Rust
● Arrow
● Parquet
● DataFusion!
● …

Outline

Brief Intro to DataFusion

Design Decisions

● Options
● What we chose and why
● Technical Overview
● Lessons learned

Intro to DataFusion

Analogy: DataFusion is LLVM for Databases

Clang Rust Swift

C/C++ frontend

LLVM

Rustlang frontend

LLVM

Swift frontend

LLVM…

LLVM enabled innovation in programming languages:
● High quality reusable optimizer, code generator, debugger, lsp integration, etc.
● Focus on language design, ecosystem, libraries, etc

https://llvm.org/

Analogy: DataFusion is LLVM for Databases

Analytic Application

Domain
Specific
Language

Specialized Database

Application LogicCatalog

Analysis Engine

Multiple SQL
Dialects

Data Flow
AnalysisCustom

Operators File System Interface

…

DataFusion enables innovation in data intensive systems
● High quality reusable SQL planner, optimizer, function library, vectorized operators, etc
● Focus on language design, data management, use case specific features

https://datafusion.apache.org/

Implementation timeline for a new Database system

Client
API

In memory
storage

In-Memory
filter + aggregation

Durability /
persistence

Metadata Catalog +
Management

Query
Language
Parser

Optimized /
Compressed
storage

Execution on
Compressed
Data

Joins!

Additional Client
Languages

Outer
Joins

Subquery
support

More advanced
analytics

Cost
based
optimizer

Out of core
algorithms

Storage
Rearrangement

Heuristic
Query
Planner

Arithmetic
expressions

Date / time
Expressions

Concurrency
Control

Data Model /
Type System

Distributed query
execution

Resource
Management

“Lets Build
a Database”

🤔

“Ok now this
is pretty
good”

😐

“Look mom!
I have a
database!”

😃
Online
recovery

Window functions

8

More Reading / Viewing / Background

In SIGMOD 2024 https://db.cs.cmu.edu/seminar2024/ https://datafusion.apache.org/

https://dl.acm.org/doi/10.1145/3626246.3653368
https://db.cs.cmu.edu/seminar2024/
https://www.youtube.com/watch?v=iJhRbDFJjbg
https://datafusion.apache.org/

Design Decisions

Programming Language?

Programming Language

Option 1: C/C++

Pros: Well understood, significant track
record in databases

Cons: Hard to write correct code. The
build system! Macros! etc.

Option 2: Rust

Pros: Memory and Thread safety, Hip
langage (attracts new developers), modern
tooling (e.g. Cargo)

Cons: Not battle tested for Database
implementations when choosing

Programming Language

What we did: Rust

Why:

● Initially because Andy Grove believed in Rust*

* See https://andygrove.io/2018/01/rust-is-for-big-data/

https://andygrove.io/2018/01/rust-is-for-big-data/

Lamb Theory on Evolution of Systems Languages

2000s: C/C++ Productivity Speed

tim
e

Personal C/C++ productivity anecdotes. Hours spent:

● Chasing build problems: “symbol not found”, what -W,-l… incantation needed 🤔
● Memory stomps/races: “the program segfaults under extreme load, intermittently”

Thanks to https://x.com/KurtFehlhauer (twitter) for helping with this slide

2010s: Java Productivity Speed

2020s: Rust Productivity Speed

https://x.com/KurtFehlhauer
https://x.com/andrewlamb1111/status/1835686501285556599

Quiz: does this program have undefined behavior?

std::vector<int> v { 10, 11 };

int *vptr = &v[1];

v.push_back(12);

std::cout << *vptr;

Source: Communications of the ACM: Safe Systems Programming in Rust

let mut v = vec![10, 11];

let vptr = &mut v[1];

v.push(12);

println!("{}", *vptr);

Points *into* v.

Compiler errorUse after free (maybe)

https://dl.acm.org/doi/pdf/10.1145/3418295

CodeAPI Sandbox

https://codapi.org/embed/?sandbox=cpp&code=data%3A%3Bbase64%2CPYxBCsIwFAX3%2FxQPCqUVKcZlE3MREYlpwKBNSvKTTendRYpuh5lpfLDvMjmo6izHpKn5Ex8zJ2dmTeQDYzY%2BdD1WAjJP47gHygfWqFghTkcIgU0S8PUPdeGEC9p6FTcJAuqwlPy8P4x9deLcy9%2FJxsJQai8kbR8%3D

binary_map.rs from DataFusion

fn insert_if_new_inner<MP, OP, B>(
 &mut self,
 values: &ArrayRef,
 mut make_payload_fn: MP,
 mut observe_payload_fn: OP,
) where
 MP: FnMut(Option<&[u8]>) -> V,
 OP: FnMut(V),
 B: ByteArrayType,
{
 // step 1: compute hashes
 let batch_hashes = &mut self.hashes_buffer;
 batch_hashes.clear();
 batch_hashes.resize(values.len(), 0);
 create_hashes(&[values.clone()], &self.random_state, batch_hashes)
 // hash is supported for all types and create_hashes only
 // returns errors for unsupported types
 .unwrap();

 // step 2: insert each value into the set, if not already present
 let values = values.as_bytes::();

 // Ensure lengths are equivalent
 assert_eq!(values.len(), batch_hashes.len());
…

Example: Implement specialized group storage in Rust

https://github.com/apache/arrow-datafusion/blob/37ea944f54a2e013b2a3d45f6854fae3d1e09e8a/datafusion/physical-expr/src/binary_map.rs#L4

binary_map.rs from DataFusion

 for (value, &hash) in values.iter().zip(batch_hashes.iter()) {
 // handle null value
 let Some(value) = value else {
 ...(handle nulls here)
 };
 observe_payload_fn(payload);
 continue;
 };

 // get the value as bytes
 let value: &[u8] = value.as_ref();
 let value_len = O::usize_as(value.len());

 // value is "small"
 let payload = if value.len() <= SHORT_VALUE_LEN {
 let inline = value.iter().fold(0usize, |acc, &x| {
 acc << 8 | x as usize
 });

 // is value is already present in the set?
 let entry = self.map.get_mut(hash, |header| {
 // compare value if hashes match
 if header.len != value_len {
 return false;
 }
 // value is stored inline so no need to consult buffer
 // (this is the "small string optimization")
 inline == header.offset_or_inline
 });

 if let Some(entry) = entry {
 entry.payload
 }

 if let Some(entry) = entry {
 entry.payload
 }
 // if no existing entry, make a new one
 else {
 // Put the small values into buffer
 self.buffer.append_slice(value);
 self.offsets.push(
 O::usize_as(self.buffer.len())
);
 let payload = make_payload_fn(Some(value));
 let new_header = Entry {
 hash,
 len: value_len,
 offset_or_inline: inline,
 payload,
 };
 self.map.insert_accounted(
 new_header,
 |header| header.hash,
 &mut self.map_size,
);
 payload
 }
 }
 // value is not "small"
 else {
...
 }
 // Check for overflow in offsets

https://github.com/apache/arrow-datafusion/blob/37ea944f54a2e013b2a3d45f6854fae3d1e09e8a/datafusion/physical-expr/src/binary_map.rs#L4

// value is not "small"
else {
 // Check if the value is already present in the set
 let entry = self.map.get_mut(hash, |header| {
 // compare value if hashes match
 if header.len != value_len {
 return false;
 }
 // Need to compare the bytes in the buffer
 // SAFETY: buffer is only appended to, and we correctly inserted values and offsets
 let existing_value =
 unsafe { self.buffer.as_slice().get_unchecked(header.range()) };
 value == existing_value
 });

binary_map.rs from DataFusion

https://github.com/apache/arrow-datafusion/blob/37ea944f54a2e013b2a3d45f6854fae3d1e09e8a/datafusion/physical-expr/src/binary_map.rs#L4

Rust: Lessons Learned

● Rust lived up to the hype
○ In 4 years, we had ~1 memory issue, and no multi-threaded bugs / race conditions

● Learning curve is quite steep
○ Be prepared to curse the compiler for a while

● Ecosystem / package manager is amazingly productive
○ cargo new my_project
○ cd my_project
○ cargo add datafusion

Rust: Lessons Learned

● Improves Open Source Project Velocity
○ Compiler enforces memory safety rather than relying on code reviews
○ Reviewer bandwidth is the most limited resource we have

● Improved Quality of Contributions
○ Non trivial dedication to learn Rust → filtering effect increases contribution quality

Memory Format?

Memory Format

Option 2: Use Arrow Internally
(pola.rs, Acero)

Pros: Fast interchange, reuse Arrow libraries,
UDF* become trivial

Cons: Constrained(*) to Arrow

Option 1: Use specialized structures
internally, convert to Arrow at edges
(Spark, Velox, DuckDB, …)

Pros: Can use specialized structures

Cons: Maintain specialized code

Scan

Filter
System
Specific

Agg
System
Specific

System
Specific

Convert to arrow

Scan

Filter

Agg

Memory Format

What we did:

● Used Apache Arrow

Why:

● Theory: Using Arrow is “good enough” compared to specialized structures

| © Copyright 2024, InfluxData25

Pretty much
what you will find

in every
vectorized

column store
engine

Arrow Array: Int64Array

15

1743

NULL

432

..

9

322

8

Logically 1024
8 byte integers

Buffer (aligned)
8192 bytes

15
0

Byte Offset

1743

??

432

9

322

8

…

8

16

24

8168

8176

8184

…

Arrow Array

1

1

1

0

1

1

1

Validity (bitmask)
128 bytes

Bit Offset

…

0

1

2

3

127

126

125

| © Copyright 2024, InfluxData26

Compute Kernels

let output = gt(

 &left,

 &right

);

+10
20
17
5
23
5
9
12
4
5
76
2
3
5

2
33
2
1
6
7
8
2
7
2
5
6
7
8

left right output

1
0
1
1
1
0
1
1
0
1
1
0
0
0

>

>

>

>

The gt (greater than) kernel computes an output
BooleanArray where each element is left > right

Kernels handle nulls (validity masks), optimizations for
different data sizes, etc.

~50 different kernels, full list: docs.rs page

https://docs.rs/arrow/34.0.0/arrow/compute/kernels/index.html

Memory Format - Lessons Learned

● Upstream wasn’t quite ready ⇒ needed lots of help

● arrow-rs optimized kernels were as important as layout

● Missing Features: * Selection Vectors / “String Views” / RLE encoding

● Single constant value (ScalarValue) should have been in Rust Arrow

● Awkward that Arrow DataTypes both logical and physical (DictionaryArray)

* RLE + StringView were added later

Storage/File Format?

File Format

Option 1: Custom format (e.g.
DuckDB, Snowflake, Vertica, ...)

Pros: Can use specialized structures,
encodings, control the format

Cons: Maintain specialized code, pay to
copy data in / out of this format

Option 2: Existing Format (e.g.
Parquet)

Pros: Well understood, ecosystem
interoperability

Cons: Constrained(*) to formats + existing
implementations

C1 C1 C.. CN meta
data…

Custom columnar format

C1 C2 C… CN meta
data…

…

PAX style, encodings, statistics in Zone Maps, etc

C1 C1 C.. CN meta
data…

C1 C2 C… CN meta
data…

…

https://duckdb.org/docs/internals/storage

File Format

What we did:

● Use Parquet, Avro, Json, CSV, Arrow
● Extension APIs for others

Why?

● Parquet has enough (Pax, Bloom Filters, Zone Maps)
● Huge amount of Parquet already out there (table stakes!)

Parquet Organization

Source: https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

A B C

15 Foo 1/1/2023

…

11 Bar ..1/5/2023

50 Baz 1/1/2023

…

32 Blarg 1/6/2023

(“PAX” in DB literature)

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

Parquet Structure + Metadata

Source:
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

…

…

…

Metadata footer

Highly encoded /
compressed pages

Footer contains location of pages, and statistics such as
min/max/count/nullcount.

(“Zone Maps”, “Small Materialized Aggregates” in DB literature)

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

Parquet Projection + Filter Pushdown

Source:
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

…

…

…

Metadata footer

Highly encoded /
compressed pages

Metadata + query to prune (skip)
pages that aren’t needed

SELECT A
...
WHERE C > 25

1. Consult
metadata

2. Only
read/decode
necessary
pages

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

File Format - Lessons Learned

● Standard formats ⇒ large community interested, able and willing to help
● Parquet has many optimization opportunities

○ Rust Parquet implementation is now really good
○ Statistics Pruning (file, row group, page index)
○ Filter pushdown / Late Materialization / IO Interleaving

● Leveraging existing format and invest heavily in the software implementation
○ Work with community to evolve rather than replace Parquet

See blog: Querying Parquet with Millisecond Latency for more details

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

Catalog?

Catalog Format

Option 1: Provide catalog (e.g.
.sqlite, .duckdb, Iceberg, etc)

Pros: Fast to start using

Cons: catalog implementation bound to usecase
(e.g. local files vs remote service), planner may be
more coupled to catalog

Option 2: Provide an API (e.g. Calcite)

Pros: can tailor the catalog to needs, planner not
coupled to catalog

Cons: higher startup cost (have to implement
catalog)

User Defined
CatalogAPIPlanner

Concrete catalog implementation

Planner Catalog

User provides the catalog implementation

Catalog Format

What we did:

● 2 simple built in catalogs (memory + file based / Hive-style partitioning)
● APIs for others

Why:

● Catalog format is very usecase / system dependent
● Nothing we could have built in would likely work well

Listing Table Catalog
table1
 ├── file1.parquet
 └── file2.parquet

table2
 ├── date=2024-06-01
 │ ├── file3.parquet
 │ └── file4.parquet
 └── date=2024-06-02
 └── file5.parquet

Tables:
● Directories of files
● “Standard” hive-style directory partitioning

SELECT …
FROM table2
WHERE date=’2024=06-02’

SQL Query Filesystem directory structure

Catalog Format - Lessons Learned

● Providing basic “get started” implementation and extension APIs worked great

○ Let people start quickly, but customize as needed

● ListingTable (directory Filesystem):

○ More complicated than expected

○ Should have had a cleaner separation from the start

Planning?

SQL Dialects

Option 2: Use existing dialect

Pros: Avoid having to define semantics

Cons: Bug for bug compatible. Have to
pick one dialect

Option 1: Implement your own

Pros: have exactly the semantics you
want, friendlier language

Cons: It is a lot of work (implementation
and education)

SELECT
 age,
 sum(civility) AS total_civility
FROM star_wars_universe
GROUP BY ALL
ORDER BY ALL;

Friendlier SQL with DuckDB

SELECT
 age,
 sum(civility) AS
total_civility
FROM star_wars_universe
GROUP BY age
ORDER BY age, total_civility;

“Standard” SQL

https://duckdb.org/2022/05/04/friendlier-sql.html

SQL Dialects

What we did:

● Emulate postgres semantics default
● Extension APIs

Why:

● Well understood
● It is time consuming / expensive to invent semantics

SQL Dialects - Lessons Learned

● Dialect syntax only part of the story. Others:

○ Function Library and semantics (e.g null or error on invalid args?)

○ DataTypes (VARCHAR2? CHAR / VARCHAR?)

○ Type Coercion Rules

● No one ideal choice: Spark Dialect vs Postgres (A: UDFs!)

● Postgres + Arrow timestamp representation impedance mismatch

● On the whole this was still a good idea

SQL Planner

Option 2: Calcite

Pros: Mature

Cons: Java (dependencies), bridge plan
representation to internal representation

Option 1: Implement sql parser /
planner

Pros: Minimize dependencies, native
integration into plan structures / exprs

Cons: Much more work

SELECT status, COUNT(1)
FROM http_api_requests_total
WHERE ...

SQL Parser /
Planner

SELECT status, COUNT(1)
FROM http_api_requests_total
WHERE ...

SQL Text SQL Text

LogicalPlanLogicalPlan

SQL Planner

What we did

● Implemented own sqlparser-rs and planner in Rust
● + extensions

Why:

● Avoid Java dependencies / have a pure Rust stack

SQL Planner - Lessons Learned

● Implementing a SQL planner is a LOT of work

○ SQL is a crazy creole language

● Modularity helped

○ sqlparser-rs has a clean split from DataFusion

○ Means it is used by many projects, and thus benefits from larger community

● Would recommend avoiding this if you can

Plan Representation / API

Option 1: Custom Structures

Pros: Native APIs, make it ergnonomic

Cons: (very) large API surface area +
code to maintain, have to define
semantics precisely

Option 2: Use existing library

Pros: Code is simple, planning is predictable

Cons: Limited to whatever is available

Filter:
#a=b

TableScan: t

Aggregate:
groupBy=[[#status]],

aggr=[[COUNT(UInt8(1))]]

Filter
Operation

Read
Operaration

Aggregate
Operation

Plan Representation / API

What we did:

● Custom structures and API
● + Extension APIs

Why:

● No compelling alternative

Plan Representation / API - Lessons Learned

● It is a lot of code and API design

● TreeNode API is quite cool (unified Expr/Plan walking)

● Custom serialization takes takes lots of time

● Would / should have used substrate if it was ready

● Should have used rewrite in place APIs for performance reasons

https://substrait.io/

Cost Based / Stratified / Unified / Join Order Optimizer

Option 1: CBO + Heuristics

Pros: Well understood pattern in DBs

Cons: Known hard problem: cost
estimates, cardinality estimates,
correlations, performance cliffs, etc

Option 2: “Syntactic” optimizer
(whatever order user tells you)

Pros: Code is simple, planning is predictable

Cons: Complex join orders ⇒ 😦

SELECT ...
FROM
 A
 JOIN B ON ...
 JOIN C ON ...

AB

C
⨝

⨝

Cost Based / Stratified / Unified / Join Order Optimizer

What we did:

● Syntactic optimizer
● + Just enough to avoid TPCH disasters

Why:

● Handling complex join reordering is hard (both theoretically and practically):
Depends a lot on cost model + accurate statistics (also hard)

● Denormalized tables very common in olap workloads (so join order relatively
less important)

● Users can implement more sophisticated strategies as rewrites

Cost Based Optimizer: Lessons Learned

Join order disaster (subquery
cardinality estimation, fixed in #7949)

● Worked OK (Some TPCH embarrassments)

https://github.com/apache/arrow-datafusion/issues/7949

Cost Based / Stratified / Unified / Join Order Optimizer

● Example of implement Join Ordering as user defined rule

“Currently, optd is integrated into Apache Arrow Datafusion as a physical
optimizer. It receives the logical plan from Datafusion, implements various physical
optimizations (e.g., determining the join order), and subsequently converts it back
into the Datafusion physical plan for execution.”

https://github.com/cmu-db/optd

https://github.com/cmu-db/optd

Conclusion 😅

Conclusion and Takeaways

● Analytic Systems take a lot of work

● Rust and Apache {Arrow, Parquet, DataFusion} are awesome

● Reusing open building blocks saved lots of effort

○ Not free: contributed a lot back to help make them better

● Basic implementations + Extension APIs: kept core “simple”

○ Same APIs for Built in and User Defined

○ Forces the API to be complete / no special casing (e.g. UDFs)

Thank you

https://datafusion.apache.org/

Come join us!

https://datafusion.apache.org/

Buffer Pool

ExecutionEngine

Buffer Pool

Option 1: Custom Bufferpool

Pros: Well understood pattern in DBs

Cons: Significant system complexity,
have to manage memory distribution
between I/O, execution, etc. Tune pool to
workload

Option 2: OS Alloc + Page Cache

Pros: No code to manage

Cons: Beholden to OS, Potential MMAP 💩
situations

buffers

…

Storage System

ExecutionEngine

OS

Storage System

…

Buffer Pool

What we did: Use OS + User defined cache

Why: Simple

● Optimal Caching strategy almost always highly
dependent on system / environment

● Can implement caching strategies (aka buffer
pool) via extensions

Lessons Learned:

● This has worked very well – basic
implementation is easy to understand and very
predictable

ExecutionEngine

OS

Storage System

…

User Defined
Cache …

Backup Content

Execution Engine Scheduler

Option 1: Write own (push based)
scheduler

Pros: Tight control over behavior, prioritization, etc

Cons: Very hard to write correctly and tune well,
especially under load, network backpressure, etc

Option 2: Use tokio scheduler (pull)

Pros: Someone else writes scheduler and
tools, integrated IO + CPU (tokio) patterns,
already present in many rust apps

Cons: Less control

Filter AggScan

Scheduler “pushes” blocks from scan through plan

Custom
Scheduler

Scheduler “pulls” blocks from scan through plan

Filter AggScan

tokio.rs
Scheduler

Execution Engine Scheduler

What we did: Used Tokio + Futures + Rust async continuations

Why:

● Super well tested, built in compiler language support and tools
● Didn’t really have budget to make our own

Lessons Learned:

● I would do it again (though I will admit others are not convinced)
● Performance turned out to be no different than custom scheduler
● TUM papers are convincing (esp with DuckDB’s story)
● Easy to run IO and CPU on the same pool, so care is warranted (though I would argue it

was good we didn’t need to worry about this until it actually mattered for our scale)

More details in https://thenewstack.io/using-rustlangs-async-tokio-runtime-for-cpu-bound-tasks/

https://thenewstack.io/using-rustlangs-async-tokio-runtime-for-cpu-bound-tasks/

Execution Engine Scheduler: Morsels?

We actually tried to implement a push based (morsel
driven) scheduler

“the rayon-based [push based] scheduler in its current
incomplete incarnation provides minimal benefits over the
current tokio-based approach, and is a non-trivial amount of
fairly complex code.” - removal PR

More details in the Epic

Paper: Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation
Framework for the Many-Core Age

https://github.com/apache/datafusion/pull/6169
https://github.com/apache/datafusion/issues/2504
https://db.in.tum.de/~leis/papers/morsels.pdf
https://db.in.tum.de/~leis/papers/morsels.pdf

More details in our SIGMOD paper: https://s.apache.org/datafusion-sigmod-2024
ClickBench Scaling of DataFusion (orange) vs DuckDB (blue) 1 - 172 cores ⇒ shapes are very similar

https://s.apache.org/datafusion-sigmod-2024

Governance

Option 1: Custom Governance

Pros: Very flexible, custom tailored
doesn’t slow down

Cons: Can be non trivial to setup,
unclear governance long term
sustanaibility

Option 2: Open, existing system

Pros: Predictable well understood
governance

Cons: Often slower / not ideal process, may
be hard to join

“Benevolent Dictator for Life”, “Lone Maintainer”, etc Foundation

https://en.wikipedia.org/wiki/Benevolent_dictator_for_life

Governance

What we did: Open Governance via Apache Software Foundation

Why:

● Allows contributors from many companies
● Makes governance clear and predictable, especially growing capacity

Lessons Learned

● Totally open / public community takes getting used to
● Works shockingly well
● Not the fastest way of making decisions

* Full Disclosure: I am an ASF foundation member (via work on Arrow + Datafusion)

Architecture / Roadmap

Option 1: Tight Control

Pros: Unified architecture, coherent
APIs, decided by a small group of people

Cons: scaling up, limits contributors

Option 2: Accept anything

Pros: Can draw from many people

Cons: Can end up with frankenstein APIs,
half finished features

Cathedral Bazzar

Eric Raymond: https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar

https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar

Architecture / Roadmap

What we did: default accept features

● Datafusion-contrib: outlet for people to contribute without as many constraints / still
have community

Why:

● Encourages growth and contribution as people feel control over direction

Lessons Learned

● Shockingly effective
● Insist on tests for all PRs: likely more important than the actual code
● Code quality can vary (which is ok to clean it up over time, with tests)
● Need to invest in tracking follow on work with tickets

Architecture / Roadmap

Example contributor driven features

● Predicate pushdown into TableProvider - Thanks @returnString
● Window functions – Thanks @jimexist
● COPY statement, parallelized parquet writer – Thanks @devinjdangelo
● Parquet bloom filter / data page pruning – Thanks @Ted-Jiang

Examples of half finished things

● Recursive CTEs (then @jonahgao picked it up and brought it over the line)
● Predicate selectivity estimation

But quality?

“Originally suggested by former BBC radio presenter James
Hand, by the end of the poll on 16 April Boaty McBoatface
had garnered 124,109 votes and 33% of the total vote.”

⇒ “Science Minister Jo Johnson said there were "more
suitable" names.”

But quality?

● Quality is quite high
● Bugs and regressions do get introduced
● But fixed almost as soon as they are filed (often by the original author)
● I believe quality is better than many of the enterprise software systems I have

worked on

Example: Shocking effectiveness of tickets

🤯: File ticket and often there

is a PR up within 24 hours to

solve it

⇒ “file clear requests” and

people want to help

It does take non-coding effort

16 Minutes
between file
and claim

https://github.com/apache/arrow-datafusion/issues/9157

https://github.com/apache/arrow-datafusion/issues/9157

Make the engine Distributed Engine

What we did instead: Focused on single core, features to build distributed engine

Plan Serialization + use arrow flight

Why:

Distribution strategy varies greatly on usecase

All can be built with a single core

Had other projects (like Ballista) that added distribution

Lessons Learned:

Optimized Comparisons

Why: optimize multi column sort

Add RowFormat to Arrow (see Blog)

Used in merge, multi-column grouping and join comparisons

Lessons Learned:

● Dictionary interning was a bad idea (memory exploded)
●

Manually vectorized kernels

What we did instead: Use autovectoruixation in Rust

Why: Partly Rust’s SIMD intrincs story wasn’t ideal, but we found we could often
get better results with careful rust code than with custom kernels

Lessons Learned:

●

Optimized Hash Aggregates

Why: aggreagation key

What: Two phase hash aggregate (todo blog post link)

Special column based key storage, type specialized, etc

Lessons Learned:

● Need special case code for different types
● Rust auto-vectorization is quite nice

Function Library

Why: Turns out a lot of SQL functionality

What: Massive library (TODO quantify) of functions, all use the same API as user
functions

Lessons Learned:

● Had a split initially between built in functions and udfs
● Should have had easier UDFs earlier on
● That way behavior can be customized more easily rather than the core ever

growing

Pruning Predicate

Why: Key building block for many opimtizations, inclding fast parquet reader

What: given expression and min/max/nullcounts (and bloom filter info) tell “can this
possibly have rows that evaluate to true)?

Lessons Learned:

● API needs to be vectorized (quickly prune large numbers of files)
● Pruning is crazy tricky (because you are trying to prove the null) – testing

Listing Table: Hive style partitioned data

Why: lots of data is in this format (predates table formats)

What: TODO show example directory

Lessons Learned:

● Should have had this outside the core earlier on (as people almost
immediately wanted to plug in other file types in there)

Foundations: Apache Parquet

● Open column-oriented data file format,
● Provides efficient data compression and encoding schemes, along with support

for structured types via record shredding [56], embedded schema descriptions,
zone-map [57] like index structures and Bloom filters for fast data access.

Differences

● Arrow: fast random access and efficient in-memory processing
● Parquet: store large amounts of data in a space-efficient manner.

Why Parquet and not a specialized format?

● De-facto standard for data storage and interchange in the analytic ecosystem.
● Open format, excellent compression across real-world data sets, broad

ecosystem and library support, and embedded self-describing schema
● Structure allows query engines (like DataFusion) to apply projection and filter

pushdown techniques, such as late materialization, directly on files, yielding
competitive performance compared with specialized formats [48].

Foundations: Apache Arrow

Apache Arrow

● Standardizes industrial best practices to represent data in memory using
cache-efficient columnar layouts.

● Users avoid re-implementing features that are well understood in academia and
industry, but time-consuming to implement.

Specifies

● Validity/null representations; Endianness
● Variable length byte and character data; lists, and nested structures,

Benefits

● Well-known techniques (e.g. vectorized compute kernels, special case nulls/no-nulls)
● Easy + zero cost data interchange (e.g. is a NULL value is represented by a 0 or 1 in a

bit mask?).
● Arrow evolves over time (e.g. StringView [21] and high-performance compute kernels)

Pretty much what
you will find in

every vectorized
column store

engine

Arrow Array: Int64Array
15

1743

NULL

432

..

9

322

8

Logically 1024
8 byte integers

Buffer (aligned)
8192 bytes

15
0

Byte Offset

1743

??

432

9

322

8

…

8

16

24

8168

8176

8184

…

Arrow Array

1

1

1

0

1

1

1

Validity (bitmask)
128 bytes

Bit Offset

…

0

1

2

3

127

126

125

Why Arrow Internally (and not just at interface)?

So far results
are encouraging

Theory: Using Arrow is “good enough” compared to specialized structures

Pooled open source development → invest heavily in optimized parquet reader

https://github.com/tustvold/access-log-bench

Good: Sorting, Filtering,
Projection, Parquet

Could Improve:
Grouping, Joining

https://github.com/tustvold/access-log-bench

Foundations: Rust and its Ecosystem

Rust [76]: new system programming language (LLVM based)

1. Excellent Performance: similar to C/C++
2. Easy to Embed: no language run-time and have C ABI compatibility.
3. Resource Efficient: Low level (but safe!) memory management
4. Productive Ecosystem: Cargo Package Manager[12] and crate ecosystem

make adding DataFusion to most projects as simple as adding a single line to
a configuration file.

Physical Segment Trees

What we did instead: Classic sort based optimziations (sorted input by
PARTITION BY / ORDER BY clause)

Why: Simple, well understood

Lessons Learned:

