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Goal

Content: Case Study of Choices in Apache DataFusion Query Engine

- Exposure to important aspects of analytic query engines
- Introduction to currently important technologies

Convince you to build with / contribute to the building blocks:

Rust

Arrow
Parquet
DataFusion!



Outline

Brief Intro to DataFusion
Design Decisions

Options

What we chose and why
Technical Overview
Lessons learned



Intro to DataFusion



Analogy: DataFusion is LLVM for Databases

C/C++ frontend

Rustlang frontend

€§ LLVM

Swift frontend

Clang

LLVM enabled innovation in programming languages:

e High quality reusable optimizer, code generator, debugger, Isp integration, etc.

e Focus on language design, ecosystem, libraries, etc



https://llvm.org/

Analogy: DataFusion is LLVM for Databases
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DataFusion enables innovation in data intensive systems
e High quality reusable SQL planner, optimizer, function library, vectorized operators, etc
e Focus on language design, data management, use case specific features



https://datafusion.apache.org/
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Design Decisions



Programming Language?



Programming Language

Option 1: C/C++

Pros: Well understood, significant track
record in databases

Cons: Hard to write correct code. The
build system! Macros! etc.

Option 2: Rust

Pros: Memory and Thread safety, Hip
langage (attracts new developers), modern
tooling (e.g. Cargo)

Cons: Not battle tested for Database
implementations when choosing



Programming Language

What we did: Rust
Why:

e |Initially because Andy Grove believed in Rust*

* See https://andygrove.io/2018/01/rust-is-for-big-data/



https://andygrove.io/2018/01/rust-is-for-big-data/

Lamb Theory on Evolution of Systems Languages

swl}

2000s: C/C++ Productivity Speed

Personal C/C++ productivity anecdotes. Hours spent:

e Chasing build problems: “symbol not found”, what -, - 1... incantation needed &)
e Memory stomps/races: “the program segfaults under extreme load, intermittently”

2010s: Java Productivity Speed

2020s: Rust Productivity Speed

Thanks to https://x.com/KurtFehlhauer (twitter) for helping with this slide



https://x.com/KurtFehlhauer
https://x.com/andrewlamb1111/status/1835686501285556599

Quiz: does this program have undefined behavior?

std: :vector<int> v { 10, 11 };

Points *into* v.

Use after free (maybe)

let mut v = vec![10, 11];

println! ("{}V, *vptr);

Compiler error

Source: Communications of the ACM: Safe Systems Programming in Rust



https://dl.acm.org/doi/pdf/10.1145/3418295

>. codapi

C++ playground

#include <vector>
#include <iostream>

int main() {
std::vector<int> v { 10, 11 };
int xvptr = &v[1];
v.push_back(12);
std::cout << xvptr;

b

1
2
3
4
5
6
-
8
9

C++ is a general-purpose programming language that began as an extension
of C, but later acquired object-oriented, generic, and functional features.

7 ho *aw - ¥

CodeAPI| Sandbox



https://codapi.org/embed/?sandbox=cpp&code=data%3A%3Bbase64%2CPYxBCsIwFAX3%2FxQPCqUVKcZlE3MREYlpwKBNSvKTTendRYpuh5lpfLDvMjmo6izHpKn5Ex8zJ2dmTeQDYzY%2BdD1WAjJP47gHygfWqFghTkcIgU0S8PUPdeGEC9p6FTcJAuqwlPy8P4x9deLcy9%2FJxsJQai8kbR8%3D

Example: Implement specialized group storage in Rust

fn insert if new_inner<MP, OP, B>(
&mut self,
values: &ArrayRef,
mut make payload fn: MP,
mut observe payload fn: OP,
) where
MP: FnMut (Option<&[u8]>) -> V,
OP: FnMut (V),
B: ByteArrayType,

let batch hashes = &mut self.hashes buffer;

batch hashes.clear();

batch hashes.resize(values.len(), 0);

create hashes(&[values.clone()], &self.random state, batch hashes)

.unwrap () ;
let values = values.as_bytes::<B>();

assert_eq! (values.len(), batch_hashes.len());

binary_map.rs from DataFusion



https://github.com/apache/arrow-datafusion/blob/37ea944f54a2e013b2a3d45f6854fae3d1e09e8a/datafusion/physical-expr/src/binary_map.rs#L4

for (value, é&hash) in values.iter().zip(batch_hashes.iter())
// handle null wvalue
let Some(value) = value else {
... (handle nulls here)
};
observe payload_f£fn (payload) ;
continue;

{ if let Some(entry) = entry ({
entry.payload

}

// if no existing entry, make a new one

else {
// Put the small values into buffer
self.buffer.append slice(value) ;
self.offsets.push(

O::usize_as(self.buffer.len())

};

// get the value as bytes
let value: &[u8] = value.as ref();
let value_len = O::usize as(value.len());

)i

let payload = make payload fn(Some(value)) ;

let new header = Entry ({
hash,
len: value len,
offset or inline: inline,
payload,

bi

self.map.insert accounted (
new header,
|header| header.hash,
&mut self.map size,

// value is "small"
let payload = if value.len() <= SHORT VALUE LEN {
let inline-="value.iter() .fold(Ousize, |acc, &x| {
act << 8 | x as usize

|

// is value is already present in the set?
let entry = self.map.get mut(hash, |header| {
// compare value if hashes match
if header.len != value_len {

return false;

)
payload
}
}
// value is stored inline so no need to cdénsult buffer
// (this is the "small string optimization")
inline == header.offset or inline

}
// value is not "small"
else {

}

// Check for overflow in offsets

})

if let Some(entry) = entry ({
entry.payload

}
binary_map.rs from DataFusion


https://github.com/apache/arrow-datafusion/blob/37ea944f54a2e013b2a3d45f6854fae3d1e09e8a/datafusion/physical-expr/src/binary_map.rs#L4

else {

let entry = self.map.get mut(hash, |header| {

if header.len != value len ({
return false;

}

let existing value =
unsafe { self.buffer.as slice() .get_unchecked (header.range()) };
value == existing value

binary map.rs from DataFusion



https://github.com/apache/arrow-datafusion/blob/37ea944f54a2e013b2a3d45f6854fae3d1e09e8a/datafusion/physical-expr/src/binary_map.rs#L4

Rust: Lessons Learned

e Rust lived up to the hype
o In 4 years, we had ~1 memory issue, and no multi-threaded bugs / race conditions
e Learning curve is quite steep
o Be prepared to curse the compiler for a while
e Ecosystem / package manager is amazingly productive
© cargo new my project
© cd my project
O cargo add datafusion



Rust: Lessons Learned

e Improves Open Source Project Velocity

o Compiler enforces memory safety rather than relying on code reviews
o Reviewer bandwidth is the most limited resource we have

e Improved Quality of Contributions
o Non trivial dedication to learn Rust — filtering effect increases contribution quality



Memory Format?



Memory Format

(St ]
Convert to arrow
(St ]

Option 1: Use specialized structures
internally, convert to Arrow at edges
(Spark, Velox, DuckDB, ...)

Pros: Can use specialized structures

Cons: Maintain specialized code

Option 2: Use Arrow Internally
(pola.rs, Acero)

Pros: Fast interchange, reuse Arrow libraries,
UDF* become trivial

Cons: Constrained(*) to Arrow



APACHE

Memory Format ARROW

What we did:

e Used Apache Arrow

Why:

e Theory: Using Arrow is “good enough” compared to specialized structures



Arrow Array: Int64Array
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what you will find

in every
vectorized
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@ influxdata®
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let output = gt(
&left,
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),

The gt (greater than) kernel computes an output
BooleanArray where each element is left > right

Kernels handle nulls (validity masks), optimizations for
different data sizes, etc.

50 different kernels, full list: docs.rs page

@ influxdata®


https://docs.rs/arrow/34.0.0/arrow/compute/kernels/index.html

APACHE

Memory Format - Lessons Learned ARROW

e Upstream wasn’t quite ready = needed lots of help

e arrow-rs optimized kernels were as important as layout

e Missing Features: * Selection Vectors / “String Views” / RLE encoding
e Single constant value (ScalarValue) should have been in Rust Arrow

e Awkward that Arrow DataTypes both logical and physical (DictionaryaArray)

* RLE + StringView were added later



Storage/File Format?



File Format

// \
w columnar foﬂ/

meta
. data

meta
e data

PAX style, encodings, statistics in Zone Maps, etc

Option 1: Custom format (e.g.
DuckDB, Snowflake, Vertica, ...)

Pros: Can use specialized structures,
encodings, control the format

Cons: Maintain specialized code, pay to
copy data in / out of this format

— Parauet_—

t
c1 ct| .. |c.||cN meta
1
ci||c2| .. lc.||eN ||| 5

\ //

Option 2: Existing Format (e.g.
Parquet)

Pros: Well understood, ecosystem
interoperability

Cons: Constrained(*) to formats + existing
implementations


https://duckdb.org/docs/internals/storage

%
File Format v Parquet

What we did: EA%? .

m [ &)
e Use Parquet, Avro, Json, CSV, Arrow ,a, : s

e Extension APIs for others JSON

Why?

e Parquet has enough (Pax, Bloom Filters, Zone Maps)
e Huge amount of Parquet already out there (table stakes!)



Parquet Organization

RowGroup 1
ColumnChunk 1 ColumnChunk 2 ColumnChunk 3
(column “A”) (column “B”) (column “C”)
RowGroup 2

ColumnChunk 4
(column “A”)

ColumnChunk 5
(column “B”)

ColumnChunk 6
(column “C”)

C

Source: https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

15 Foo 111/2023
[ X X J

1 Bar 1/5/2023

50 Baz 111/2023
[ X X J

32 Blarg 1/6/2023

(“PAX” in DB literature)



https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

Parquet Structure + Metadata

Footer
"
File metadata, schema, etc.

RowGroup 1 metadata

H ig h Iy e n COd ed / Coumn A mence Location of first Data Page,
olumn “B” metadata row counts, sizes, min/max
compressed pages o e

values, etc.

Column “C” metadata

o - . - S

Column “A” metadata

- Location of first Data Page,
Column “B” metadata row counts, sizes, min/max
values, etc.
Column “C” metadata
Metadata footer e ’

Footer contains location of pages, and statistics such as
min/max/count/nulicount.

Il

Source:
N Al . i - -milli - « ”» o« . . . P
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/ ( Zone MCI,DS 4 Small Materialized Aggregates in DB l/terature)


https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

Parquet Projection + Filter Pushdown

2. Only ‘
read/decode - . . Metadata + query to prune (Sklp)

necessary
pages nghly encoded / o pages that aren’t needed
Compressed pages

-..- SELECT A
BE IERE © > 25

Metadata footer ‘ 1. Consult
metadata

Source:
https://www.influxdata.com/blog/querying-parguet-millisecond-latency/



https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

File Format - Lessons Learned

e Standard formats = large community interested, able and willing to help

e Parquet has many optimization opportunities
o Rust Parquet implementation is now really good
o Statistics Pruning (file, row group, page index)
o Filter pushdown / Late Materialization / 10 Interleaving

e Leveraging existing format and invest heavily in the software implementation
o  Work with community to evolve rather than replace Parquet

See blog: Querying Parquet with Millisecond Latency for more details



https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

Catalog?



Catalog Format

User Defined
Catalog

API

Concrete catalog implementation User provides the catalog implementation

Option 1: Provide catalog (e.qg. Option 2: Provide an API (e.g. Calcite)

-sqlite, .duckdb, Iceberg, etC) Pros: can tailor the catalog to needs, planner not

Pros: Fast to start using coupled to catalog

Cons: higher startup cost (have to implement
catalog)

Cons: catalog implementation bound to usecase
(e.g. local files vs remote service), planner may be
more coupled to catalog



Catalog Format

What we did:

e 2 simple built in catalogs (memory + file based / Hive-style partitioning)
e APIs for others

Why:

e (Catalog format is very usecase / system dependent
e Nothing we could have built in would likely work well



tablel
Listing Table Catalog |— filel.parquet

L file2. parquet

table?

SELECT .. — date=2024-06-01

FROM table2 | — file3.parquet

WHERE date=’'2024=06-02' | L filed.parquet

»L— date=2024-06-02
L fileb.parquet

SQL Query Filesystem directory structure

Tables:
e Directories of files
e “Standard” hive-style directory partitioning



Catalog Format - Lessons Learned

e Providing basic “get started” implementation and extension APIls worked great

o Let people start quickly, but customize as needed

e ListingTable (directory Filesystem):
o More complicated than expected

o Should have had a cleaner separation from the start



Planning?



SQL Dialects

SELECT

age,

sum(civility) AS total civility
FROM star wars_universe

=

Friendlier SQL with DuckDB

Option 1: Implement your own

Pros: have exactly the semantics you
want, friendlier language

Cons: It is a lot of work (implementation
*and* education)

SELECT

age,

sum(civility) AS
total civility
FROM star wars_universe

- - o

“Standard” SQL
Option 2: Use existing dialect
Pros: Avoid having to define semantics

Cons: Bug for bug compatible. Have to
pick one dialect


https://duckdb.org/2022/05/04/friendlier-sql.html

PostgreSQL

SQL Dialects

What we did:

e Emulate postgres semantics default
e Extension APIs

Why:

e Well understood
e |[tis time consuming / expensive to invent semantics



SQL Dialects - Lessons Learned

e Dialect syntax only part of the story. Others:

o  Function Library and semantics (e.g null or error on invalid args?)
o DataTypes (VARCHAR2? CHAR / VARCHAR?)

o Type Coercion Rules

e No one ideal choice: Spark Dialect vs Postgres (A: UDFs!)
e Postgres + Arrow timestamp representation impedance mismatch

e On the whole this was still a good idea



SQL Planner

SELECT status, COUNT (1)
FROM http api requests total
WHERE ...

SQL Text

Option 1: Implement sql parser /
planner

Pros: Minimize dependencies, native
integration into plan structures / exprs

Cons: Much more work

e

LogicalPlan

SELECT status, COUNT (1)
FROM http api requests total

WHERE ...

SQL Text

-
calcite ==

LogicalPlan

Option 2: Calcite

Pros: Mature

Cons: Java (dependencies), bridge plan
representation to internal representation



SQL Planner

What we did

Implemented own sqglparser-rs and planner in Rust
+ extensions

Why:

Avoid Java dependencies / have a pure Rust stack

Crate sqlparser &

SQL Parser for Rust

This crate provides an ANSI:SQL 2011 lexer and parser that can parse SQL into an Abstract

io page for more information.
For more information:

w for the Parsing API

Creating SQL text from AST
the original SQL text (with comments removed, normali
capitalization), which is useful for tools that analyze and manipulate SQL.
t sql = "SELECT a

t ast = Parser::parse_sql(4GenericDialect, sql).unwrap();

11 (ast[0] . to_string(), sql);

e (AST). See the

respace and identifier




SQL Planner - Lessons Learned

e Implementing a SQL planneris a LOT of work
o SQLis a crazy creole language
e Modularity helped

o sqlparser-rs has a clean split from DataFusion

o Means it is used by many projects, and thus benefits from larger community

e \Would recommend avoiding this if you can



Plan Representation / API T

Aggregate
Operation

Filter >'
Operation

Read
Operaration >

Option 1: Custom Structures Option 2: Use existing library
Pros: Native APIs, make it ergnonomic Pros: Code is simple, planning is predictable
Cons: (very) large API surface area + Cons: Limited to whatever is available

code to maintain, have to define
semantics precisely



Plan Representation / API N
What we did:

e Custom structures and API
e + Extension APIs

Why:

e No compelling alternative



Plan Representation / API - Lessons Learned

It is a lot of code and API design
TreeNode APl is quite cool (unified Expr/Plan walking)
Custom serialization takes takes lots of time

Would / should have used substrate if it was ready

Should have used rewrite in place APls for performance reasons


https://substrait.io/

Cost Based / Stratified / Unified / Join Order Optimizer

Logical Cost

Plan Rewri ter Estimates “—I
Physical

Enumerator

Option 1: CBO + Heuristics

Pros: Well understood pattern in DBs

Cons: Known hard problem: cost
estimates, cardinality estimates,
correlations, performance cliffs, etc

SELECT ... X
FROM
A /\
JOIN B ON ... C
JOIN C ON ... B
B A

Option 2: “Syntactic” optimizer
(whatever order user tells you)

Pros: Code is simple, planning is predictable

Cons: Complex join orders = (@)



Cost Based / Stratified / Unified / Join Order Optimizer

What we did:

e Syntactic optimizer
e + Just enough to avoid TPCH disasters

Why:

e Handling complex join reordering is hard (both theoretically and practically):
Depends a lot on cost model + accurate statistics (also hard)

e Denormalized tables very common in olap workloads (so join order relatively
less important)

e Users can implement more sophisticated strategies as rewrites




Cost Based Optimizer: Lessons Learned

Duration (s)

e Worked OK (Some TPCH embarrassments)

[o)]
o

engine
mmm duckdb

mmm datafusion
0 II-IIII.II--II'IIlll_lnlllll ™~
1 2 3 4 5 6 7 8 9 10 17 12 13 14 15 16
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o
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o

18 19 20 21 22
Query

7

Join order disaster (subquery /
cardinality estimation, fixed in #7949)



https://github.com/apache/arrow-datafusion/issues/7949

Cost Based / Stratified / Unified / Join Order Optimizer

e Example of implement Join Ordering as user defined rule

“Currently, optd is integrated into Apache Arrow Datafusion as a physical
optimizer. It receives the logical plan from Datafusion, implements various physical
optimizations (e.g., determining the join order), and subsequently converts it back
into the Datafusion physical plan for execution.”

https://qithub.com/cmu-db/optd



https://github.com/cmu-db/optd

Conclusion &



Conclusion and Takeaways

e Analytic Systems take a lot of work
e Rust and Apache {Arrow, Parquet, DataFusion} are awesome

e Reusing open building blocks saved lots of effort
o Not free: contributed a lot back to help make them better
e Basic implementations + Extension APIs: kept core “simple”

o Same APIs for Built in and User Defined

o Forces the API to be complete / no special casing (e.g. UDFs)



Thank you

APACHE

~ DATAFUSION'.

||||||||||



https://datafusion.apache.org/

Buffer Pool

7 ExecutionEngine D

7| ExecutionEngine D

1 1
1
1
’ 1 1
! e 1 ’
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! OS
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1 Y
1 \ 1
\ 1

\
\ \ \
\

A
/

{ Storage System D }‘ Storage System D -
Option 1: Custom Bufferpool Option 2: OS Alloc + Page Cache
Pros: Well understood pattern in DBs Pros: No code to manage
Cons: Significant system complexity, Cons: Beholden to OS, Potential MMAP &
have to manage memory distribution situations

between 1/O, execution, etc. Tune pool to
workload



BUﬁer POOI 7] ExecutionEngine D
What we did: Use OS + User defined cache User Defined [ | D
' Cache L] N

Why: Simple ' ‘
e Optimal Caching strategy almost always highly os| |... D‘

dependent on system / environment
e Can implement caching strategies (aka buffer . ;
pool) via extensions | Storage System | | }‘

Lessons Learned:

e This has worked very well — basic
implementation is easy to understand and very

predictable



Backup Content



Execution Engine Scheduler

o0

Scan Filter Agg

Scheduler “pushes” blocks from scan through plan

Option 1: Write own (push based)
scheduler

Pros: Tight control over behavior, prioritization, etc

Cons: Very hard to write correctly and tune well,
especially under load, network backpressure, etc

B tokio.rsé
_\/D\ 220N Scheduler;

Scan Filter Agg

Scheduler “pulls” blocks from scan through plan

Option 2: Use tokio scheduler (pull)

Pros: Someone else writes scheduler and
tools, integrated 10 + CPU (tokio) patterns,
already present in many rust apps

Cons: Less control



Execution Engine Scheduler

What we did: Used Tokio + Futures + Rust async continuations

Why:

e Super well tested, built in compiler language support and tools
e Didn’t really have budget to make our own

Lessons Learned:

| would do it again (though | will admit others are not convinced)

Performance turned out to be no different than custom scheduler

TUM papers are convincing (esp with DuckDB’s story)

Easy to run IO and CPU on the same pool, so care is warranted (though | would argue it
was good we didn’t need to worry about this until it actually mattered for our scale)

More details in https://thenewstack.io/using-rustlangs-async-tokio-runtime-for-cpu-bound-tasks/



https://thenewstack.io/using-rustlangs-async-tokio-runtime-for-cpu-bound-tasks/

Execution Engine Scheduler: Morsels?

We actually tried to implement a push based (morsel
driven) scheduler

“the rayon-based [push based] scheduler in its current
incomplete incarnation provides minimal benefits over the
current tokio-based approach, and is a non-trivial amount of
fairly complex code.” - removal PR

More details in the Epic

Paper: Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation
Framework for the Many-Core Age
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ABSTRACT

With modern computer architecture evolving, two problems con-
spire against the state-of-the-art approaches in parallel query exe-
cution: (i) to take advantage of many-cores, all query work must
be distributed evenly among (soon) hundreds of threads in order to
achieve good speedup., yet (i) dividing the work evenly is difficult
even with accurate data statistics due to the complexity of modern
out-of-order cores. As a result, the existing approaches for “plan-
driven” parallelism run into load balancing and context-switching
botdenecks, and therefore no longer scale. A third problem faced
~core architectures is the decentralization of memory con-
tollers, which leads to Non-Uniform Memory Access (NUMA).
In response, we present the “morsel-driven” query execution
framework, where scheduling becomes a fine-grained run-time task
that is NUMA-aware. Morsel-driven query processing takes small
fragments of input data (“morsels”) and schedules these to worker
threads that run entire operator pipelines until the next pipeline
breaker. The degree of parallelism is not baked into the me but can
ety executior
act to execution speed of different morsel bt o adjust resources
dynamically in response to newly arriving queries rkload.
Further, the dispatcher is aware of data locality of the NUMA-local
morsels and operator state, such that the great majority of execu-
tions takes place on NUMA-local memory. Our evaluation on the
TPC-H and SSB benchmarks shows extremely high absolute per-
formance and an average speedup of over 30 with 32 cores.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

Keywords

Morsel-driven parallelism: NUMA-awareness

1. INTRODUCTION

‘The main impetus of hardware performance improvement nowa-
days comes from increasing multi-core parallelism rather than from
speeding up single-threaded performance [2]. By SIGMOD 2014
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Result

Figure 1: Idea of morsel-driven parallelism: £ X S Xz T

Intel’s forthcoming mainstream server vy Bridge EX, which can
run 120 concurrent threads, will be available. We use the term
many-core for such architectures with tens or hundreds of cores.

At the same time, increasing main memory capacities of up to
several TB per server have led to the development of main-memory
database systems. In these systems query processing is no longer
1/0 bound, and the huge parallel compute resources of many-cores
can be truly exploited. Unfortunately. the trend to move memory
controllers into the chip and hence the decentralization of mem-
ory access, which was needed o scale !hmubhpu! 10 huge mem-
ories, leads to non-uniform memory a MA). In essence,
the computer has become a network in e lhc access costs of
data items varies depending on which chip the data and the access-
ing thread are located. Therefore, many-core parallelization needs
to take RAM and cache hierarchies into account. In particular, the
NUMA division of the RAM has to be considered carefully to en-
sure that threads work (mostly) on NUMA-local data.

Abundant research in the 1990 into parallel processing led the
majority of database systems to adopt a form of parallelism in-
spired by the Volcano [12] model, where operators are kept largely
unaware of parallelism. Parallelism is encapsulated by so-called
“exchange” operators that route tuple streams between multiple
threads each executing identical pipelined segments of the query
plan. Such implementations of the Volcano model can be called
plan-driven: the optimizer statically determines at query compile-
time how many threads should run. instantiates one query operator
plan for each thread, and connects these with exchange operators.

In this paper we present the adaptive morsel-driven query execu-
tion framework, which we designed for our main-memory database
system HyPer [16]. Our Appmdcl\ is sketched in Figure 1 for the
three-way-join query R 44 S Xz T. Parallelism is achieved



https://github.com/apache/datafusion/pull/6169
https://github.com/apache/datafusion/issues/2504
https://db.in.tum.de/~leis/papers/morsels.pdf
https://db.in.tum.de/~leis/papers/morsels.pdf
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ClickBench Scaling of DataFusion (orange) vs DuckDB (blue) 1 - 172 cores = shapes are very similar
More details in our SIGMOD paper: https://s.apache.org/datafusion-sigmod-2024
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Governance

SOFTWARE FOUNDATION Foundatlon

/ rprcHE @2 0PendS

THE

L LINUX © 7 CLOUD NATIVE

FOUNDATION L. <! COMPUTING FOUNDATION

“Benevolent Dictator for Life”, “Lone Maintainer”, etc Foundation

Option 1: Custom Governance Option 2: Open, existing system
Pros: Very flexible, custom tailored Pros: Predictable well understood

doesn’t slow down governance

Cons: Can be non trivial to setup, Cons: Often slower / not ideal process, may
unclear governance long term be hard to join

sustanaibility


https://en.wikipedia.org/wiki/Benevolent_dictator_for_life

Governance APACH E

SOFTWARE FOUNDATION

What we did: Open Governance via Apache Software Foundation

Why:

e Allows contributors from many companies
e Makes governance clear and predictable, especially growing capacity

Lessons Learned

e Totally open / public community takes getting used to

e Works shockingly well
e Not the fastest way of making decisions

* Full Disclosure: | am an ASF foundation member (via work on Arrow + Datafusion)



Architecture / Roadmap

Cathedral Bazzar

Option 1: Tight Control Option 2: Accept anything
Pros: Unified architecture, coherent Pros: Can draw from many people

APls, decided by a small group of people _ _
Cons: Can end up with frankenstein APls,

Cons: scaling up, limits contributors half finished features

Eric Raymond: https://en.wikipedia.org/wiki/The_Cathedral _and_the Bazaar



https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar

Architecture / Roadmap

What we did: default accept features

e Datafusion-contrib: outlet for people to contribute without as many constraints / still
have community

Why:
e Encourages growth and contribution as people feel control over direction
Lessons Learned

Shockingly effective

Insist on tests for all PRs: likely more important than the actual code
Code quality can vary (which is ok to clean it up over time, with tests)
Need to invest in tracking follow on work with tickets



Architecture / Roadmap

Example contributor driven features

Predicate pushdown into TableProvider - Thanks @returnString
Window functions — Thanks @)jimexist

COPY statement, parallelized parquet writer — Thanks @devinjdangelo
Parquet bloom filter / data page pruning — Thanks @Ted-Jiang

Examples of half finished things

e Recursive CTEs (then @jonahgao picked it up and brought it over the line)
e Predicate selectivity estimation



But quality?

€he New ork Times

Boaty McBoatface: What You
Get When You Let the Internet

Decide “Originally suggested by former BBC radio presenter James
Fswentaice S [ Hand, by the end of the poll on 16 April Boaty McBoatface
had garnered 124,109 votes and 33% of the total vote.”

= “Science Minister Jo Johnson said there were "more
suitable" names.”

A computer image of the research vessel, which is still being designed and is
scheduled to set sail in 2019. The Natural Environment Research Council



But quality?

Quiality is quite high
Bugs and regressions do get introduced
But fixed almost as soon as they are filed (often by the original author)

| believe quality is better than many of the enterprise software systems | have
worked on



Example: Shocking effectiveness of tickets

Add API to read a Vec<RecordBatch> from SessionContext

© Closed ) alamb op:

S Y . .
X 2 .
16. Minut =5 File ticket and often there
3 e "
mﬂ alamb C . I n u es
Feb 7, 2024, 9:09 PM EST No one—: o
Is your feature request relatea 10 a problein or challenge? b etwee n fl Ie . . .
: is a PR up within 24 hours to
N SR . i enhagcement ) ( good first issue
However, there is no corresponding API to create a DataFrame from a Vec<RecordBatch> which is cgnfusiggts r e
user who just wants to do something like "sort my batches" a C a I m .
It is straightforward to scan Vec<RecordBatch> by create one with a MemTable , as is done heyé: o S O | Ve I t

None yet

byt having to find that incantation

puts a barrier to sue

There is a similar API for one batch but not one for thé" Vec<RecordBatch>

= “file clear requests” and

@ alamb added ( enhancement ) ( good first issue | lak

B people want to help

Feb 7, 2024, 9:25 PM EST
I can do this one

It does take non-coding effort

alamb cc

Thank you @Lordworms

https://qithub.com/apache/arrow-datafusion/issues/9157



https://github.com/apache/arrow-datafusion/issues/9157

Make the engine Distributed Engine

What we did instead: Focused on single core, features to build distributed engine
Plan Serialization + use arrow flight

Why:

Distribution strategy varies greatly on usecase

All can be built with a single core

Had other projects (like Ballista) that added distribution

Lessons Learned:



Optimized Comparisons

Why: optimize multi column sort

Add RowFormat to Arrow (see Blog)

Used in merge, multi-column grouping and join comparisons
Lessons Learned:

e Dictionary interning was a bad idea (memory exploded)
o



Manually vectorized kernels

What we did instead: Use autovectoruixation in Rust

Why: Partly Rust’s SIMD intrincs story wasn'’t ideal, but we found we could often
get better results with careful rust code than with custom kernels

Lessons Learned:



Optimized Hash Aggregates

Why: aggreagation key

What: Two phase hash aggregate (todo blog post link)
Special column based key storage, type specialized, etc
Lessons Learned:

e Need special case code for different types
e Rust auto-vectorization is quite nice



Function Library

Why: Turns out a lot of SQL functionality

What: Massive library (TODO quantify) of functions, all use the same API as user
functions

Lessons Learned:

e Had a split initially between built in functions and udfs

e Should have had easier UDFs earlier on
e That way behavior can be customized more easily rather than the core ever

growing



Pruning Predicate

Why: Key building block for many opimtizations, inclding fast parquet reader

What: given expression and min/max/nullcounts (and bloom filter info) tell “can this
possibly have rows that evaluate to true)?

Lessons Learned:

e API needs to be vectorized (quickly prune large numbers of files)
e Pruning is crazy tricky (because you are trying to prove the null) — testing



Listing Table: Hive style partitioned data

Why: lots of data is in this format (predates table formats)
What: TODO show example directory

Lessons Learned:

e Should have had this outside the core earlier on (as people almost
immediately wanted to plug in other file types in there)



Foundations: Apache Parquet

e  Open column-oriented data file format,

e Provides efficient data compression and encoding schemes, along with support
for structured types via record shredding [56], embedded schema descriptions,
zone-map [57] like index structures and Bloom filters for fast data access.

Differences

e Arrow: fast random access and efficient in-memory processing
e Parquet: store large amounts of data in a space-efficient manner.

Why Parquet and not a specialized format?

e De-facto standard for data storage and interchange in the analytic ecosystem.

e Open format, excellent compression across real-world data sets, broad
ecosystem and library support, and embedded self-describing schema

e  Structure allows query engines (like DataFusion) to apply projection and filter
pushdown techniques, such as late materialization, directly on files, yielding
competitive performance compared with specialized formats [48].




Foundations: Apache Arrow
APACHE

ARROW

e Standardizes industrial best practices to represent data in memory using
cache-efficient columnar layouts.

e Users avoid re-implementing features that are well understood in academia and
industry, but time-consuming to implement.

Specifies

e Validity/null representations; Endianness
e Variable length byte and character data; lists, and nested structures,

Benefits

e Well-known techniques (e.g. vectorized compute kernels, special case nulls/no-nulls)

e Easy + zero cost data interchange (e.g. is a NULL value is represented byaO or 1in a
bit mask?).

e Arrow evolves over time (e.g. StringView [21] and high-performance compute kernels)



Arrow Array: Int64Array

e APACHE
=] e " ARROW
i 0 0 |
; 15 1 |
1743 ! 8 1 :
: 1743 1 :
| 16 2 |
NULL : 22 0 :
| 24 3 i
432 | 432 |
816;.2.3 125
9 1 '
. 8176 126 Pretty much what
9 : 322 1 | e
AL 1?7 . you will find in
322 g . every vectorized
8 | Buffer (aligned) Validity (bitmask) | column store
| 8192 bytes 128 bytes

Logically 1024 engine

8 byte integers

Arrow Array



Why Arrow Internally (and not just at interface)?

Theory: Using Arrow is “good enough” compared to specialized structures
Pooled open source development — invest heavily in optimized parquet reader

Access Log Benchmark (parquet)

So far results i s W i
are encouraging

0.4

Good: Sorting, Filtering,

Projection, Parquet .

C o u I d I m p rove : . Average Query Execution Time (s)
G rO u p | n g y J O | n | N g https://github.com/tustvold/access-log-bench



https://github.com/tustvold/access-log-bench

Foundations: Rust and its Ecosystem

Rust [76]: new system programming language (LLVM based)

Excellent Performance: similar to C/C++

Easy to Embed: no language run-time and have C ABI compatibility.
Resource Efficient: Low level (but safe!) memory management

Productive Ecosystem: Cargo Package Manager[12] and crate ecosystem
make adding DataFusion to most projects as simple as adding a single line to
a configuration file.

N~



Physical Segment Trees

What we did instead: Classic sort based optimziations (sorted input by
PARTITION BY / ORDER BY clause)

Why: Simple, well understood

Lessons Learned:



