WA2 Solutions

Problem 1

1.
\[
\text{SELECT DISTINCT S.sname} \\
\text{FROM Student S, Class C, Enrolled E, Faculty F} \\
\text{WHERE S.snum = E.snum AND E.cname = C.cname AND C.fid = F.fid AND F.fname = 'Jonathan' AND S.year = 'JR'}
\]

2.
\[
\text{SELECT C.cname} \\
\text{FROM Class C} \\
\text{WHERE C.room = 'R128' OR} \\
\quad \text{C.cname IN (SELECT E.cname} \\
\quad \text{FROM Enrolled E} \\
\quad \text{GROUP BY E.cname} \\
\quad \text{HAVING COUNT(*) >= 5)}
\]

3.
\[
\text{SELECT DISTINCT F.fname} \\
\text{FROM Faculty F} \\
\text{WHERE 5 > (SELECT COUNT(E.snum)} \\
\quad \text{FROM Enrolled E, Class C} \\
\quad \text{WHERE C.cname = E.cname AND C.fid = F.fid)}
\]

4.
\[
\text{SELECT DISTINCT S.sname} \\
\text{FROM Student S} \\
\text{WHERE S.snum IN (SELECT E.snum} \\
\quad \text{FROM Enrolled E} \\
\quad \text{GROUP BY E.snum} \\
\quad \text{HAVING COUNT(*) >= ALL (SELECT COUNT(*)} \\
\quad \text{FROM Enrolled E1} \\
\quad \text{GROUP BY E1.snum))}
\]

5.
\[
\text{SELECT DISTINCT S.sname} \\
\text{FROM Student S} \\
\text{WHERE S.snum NOT IN (SELECT E.snum} \\
\quad \text{FROM Enrolled E)}
\]
Problem 2

There are many different ways to write each query.

1. SELECT DISTINCT MS.sname
 FROM MovieStar MS, Movie M, StarsIn SI
 WHERE MS.SNo = SI.SNo AND M.MNo = SI.MNo AND M.profit > 100M

2. SELECT DISTINCT MS.sname
 FROM MovieStar MS, Movie M1, Movie M2, StarsIn SI1, StarsIn SI2
 WHERE MS.SNo = SI1.SNo AND MS.SNo = SI2.SNo AND SI1.MNo <> SI2.MNo AND
 M1.MNo = SI1.MNo AND M1.profit > 100M AND M2.MNo = SI2.MNo AND
 M2.profit > 100M

3. SELECT MS.sname
 FROM MovieStar MS, Director DR
 WHERE MS.sname = DR.dname
 (or MS.SNo = DR.DNo)

4. SELECT MS.sname, AVG(M.profit) AS AvgProfit
 FROM MovieStar MS, Movie M, StarsIn SI WHERE
 MS.SNo = SI.SNo AND SI.MNo = M.MNo GROUP BY
 MS.SNo, MS.sname HAVING SUM(M.profit) > 2M

5. SELECT MS.sname
 FROM MovieStar MS
 WHERE NOT EXISTS (
 SELECT DISTINCT M.genre
 FROM Movie M
 EXCEPT
 (SELECT M2.genre
 FROM StarsIn SI, Movie M2
 WHERE SI.SNo = MS.SNo AND SI.MNo = M2.MNo)
)
Problem 3.

There are many ways to create the constraints. Here we give some examples.

1. This constraint can be added by modifying the Emp table:

   ```
   CREATE TABLE Emp
   ( eid INTEGER,
     ename CHAR(20),
     age INTEGER,
     salary REAL,
     PRIMARY KEY (eid),
     CHECK (salary>1000))
   ```

2. Create an assertion as follows:

   ```
   CREATE ASSERTION ManagerIsEmployee
   CHECK ( ( SELECT COUNT(*)
           FROM Dept D
           WHERE D.managerid NOT IN ( SELECT eid FROM Emp))=0)
   ```

 Another option is to create a constraint on the Dept table.

3. This constraint can be added by modifying the Works table:

   ```
   CREATE TABLE Works ( eid INTEGER,
                        did INTEGER,
                        pcttime INTEGER,
                        PRIMARY KEY (eid, did),
                        CHECK ( NOT EXISTS( SELECT W.eid
                                            FROM Works W
                                            GROUP BY W.eid
                                            HAVING Sum(pcttime)>100))
   ```

Problem 4.

AB, BCH, BCF are the candidate keys

BCNF

R = {A,B,C,D,E,F,G,H}
ABCDEFGH
ABCEFGH, AD (from A->D)
ABCEFH, AD, FG (from F->G)
ABCEF, AD, FG, BFH (from BF->H)

BCNF = {ABCEF, AD, FG, BFH}

Lossless, Yes.

Not dependency preserving, because we cannot check: BCH-> A using a single table.

3NF

R = {A,B,C,D,E,F,G,H}

ABCDEFGH
ABCEFGH, AD (from A->D)
ABCEFH, AD, FG (from F->G)

Now, all relations are in 3NF!!. AD, and FG are actually in BCNF and therefore also in 3NF. Relation ABCEFH is in 3NF, because the only FD where the left hand side has not a superkey is: BF->H. However H is part of a candidate key, the BCH. Therefore, this also satisfies the requirement for 3NF.

Another approach that I will consider correct is to do a BCNF decomposition and then add the extra table BCHA, so all the FDs can be checked with a single table. This decomposition is 3NF and DP (is actually BCNF and DP, but is not minimal.)

Here is also a minimal cover that you can use for 3NF:

{AB->F, A->D, F->G, BF->H, BCH->F, BCF->AE}

Notice that minimal cover is not unique.