CS460: Intro to Database Systems

Class 18: Query Processing with Relational Operations

Instructor: Manos Athanassoulis

https://midas.bu.edu/classes/CS460/
Query Processing

Overview

Readings: Chapter 12

Selections

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates
Query processing

Some database operations are EXPENSIVE

Can greatly improve performance by being ‘smart’
 – e.g., can speed up 1,000,000x over naïve approach

Main weapons are:
 1. clever implementation techniques for operators
 2. exploiting ‘equivalencies’ of relational operators
 3. using statistics and cost models to choose among these
A Really Bad Query Optimizer

For each Select-From-Where query block

- Create a plan that:
 - Forms the Cartesian product of the FROM clause
 - Applies the WHERE clause
 - Incredibly inefficient
 - Huge intermediate results!

Then, as needed:

- Apply the GROUP BY clause
- Apply the HAVING clause
- Apply any projections and output expressions
- Apply duplicate elimination and/or ORDER BY
Query execution

```
Select *  
From Blah B  
Where B.blah = "foo"
```

Usually there is a heuristics-based rewriting step before the cost-based steps.
The Query Optimization Game

‘Optimizer’ is a bit of a misnomer

Goal: pick a ‘good’ (i.e., low expected cost) plan

– Involves choosing access methods, physical operators, operator orders, ...
– Notion of cost is based on an abstract ‘cost model’

Roadmap for this topic:

– First: basic operators
– Then: joins
– After that: optimizing multiple operators
Relational Operations

We will consider how to implement:

- **Selection** (σ) Selects a subset of rows from relation
- **Projection** (π) Deletes unwanted columns from relation
- **Join** (⋈) Allows us to combine two relations
- **Set-difference** (−) Tuples in relation 1, but not in relation 2
- **Union** (∪) Tuples in relation 1 and in relation 2
- **Aggregation** (SUM, MIN, etc.) and GROUP BY

Operators can be *composed*!

Next: *optimizing* queries by composing them
Schema for Examples

Sailors \((\text{sid}: \text{integer}, \text{sname}: \text{string}, \text{rating}: \text{integer}, \text{age}: \text{real})\)
Reserves \((\text{sid}: \text{integer}, \text{bid}: \text{integer}, \text{day}: \text{dates}, \text{rname}: \text{string})\)

Similar to old schema; \textit{rname} added for variations.

Sailors:
- Each tuple is 50 bytes long, 80 tuples per page, 500 pages
- \(N=500, p_S=80\)

Reserves:
- Each tuple is 40 bytes long, 100 tuples per page, 1000 pages
- \(M=1000, p_R=100\)
Query Processing

Overview

Selections

Readings: Chapters 14.1-14.2

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates
Simple Selections

Of the form \(\sigma_{R.attr \text{ op } value} (R) \)

Question: how best to perform? Depends on:

– available indexes/access paths
– expected size of the result (# of tuples and/or # of pages)

Size of result approximated as

\[\text{size of } R \times \text{reduction factor} \]

– “reduction factor” is usually called selectivity
– estimate of selectivity is based on statistics
Alternatives for Simple Selections

With no index, unsorted:
- Must essentially scan the whole relation
- cost is M (#pages in R); for “reserves” = 1000 I/Os

With no index, sorted:
- cost of binary search + number of pages containing results.
- For reserves = 10 I/Os + ⌈selectivity*#pages⌉

With an index on selection attribute:
1. Use index to find qualifying data entries,
2. then retrieve corresponding data records
 - Note: Hash index useful only for equality selections
Using an Index for Selections

Cost \sim #qualifying tuples, clustering

- Cost factors:
 - find qualifying data entries (typically small)
 - retrieve records (could be large w/o clustering)

- Our example, “reserves” relation:
 - if 10% of tuples qualify (100 pages, 10000 tuples)
 - clustered index \rightarrow a bit more than 100 I/Os
 - unclustered \rightarrow could be up to 10000 I/Os!

unless...
Selections using Index

Important refinement for unclustered indexes:

1. Find qualifying data entries
2. Sort the rid’s of the data records to be retrieved
3. Fetch rids in order
 - Ensuring that each data page is looked at just once

![Clustered Index Diagram](image)

![Unclustered Index Diagram](image)
General Selection Conditions

\[(\text{day}<8/9/94 \text{ AND rname}= \text{‘Paul’}) \text{ OR bid}=5 \text{ OR sid}=3\]

First converted to **conjunctive normal form (CNF)**

\[- (\text{day}<8/9/94 \text{ OR bid}=5 \text{ OR sid}=3) \text{ AND } (\text{rname}= \text{‘Paul’} \text{ OR bid}=5 \text{ OR sid}=3)\]

We assume no ORs (conjunction of \text{<attr op value>})

A **B-tree** index **matches** (a conjunction of) terms that involve only attributes in a **prefix** of the search key

- Index on \text{<a, b, c>} matches \text{a}=5 \text{ AND b}=3, but not \text{b}=3

Hash indexes must have all attributes in search key
Selections – 1st approach

1. Find the *cheapest access path*
2. Retrieve tuples using it
3. Apply the terms that don’t match the index (if any):
 - *Cheapest access path*
 An index or file scan with the fewest estimated page I/Os
 - Terms that match this index reduce the # of tuples *retrieved*
 - Other terms are used to discard some retrieved tuples, but do not affect number of tuples/pages fetched
Cheapest Access Path - Example

Consider \(\text{day} < 8/9/94 \ \text{AND} \ \text{bid}=5 \ \text{AND} \ \text{sid}=3 \)

A B+ tree index on \text{day} can be used;
- then, \text{bid}=5 \ \text{and} \ \text{sid}=3 \ must be checked for each retrieved tuple

Similarly, a hash index on \(<\text{bid}, \text{sid}> \) could be used;
- \text{Then},\ \text{day}<8/9/94 \ must be checked

How about a B+tree on \(<\text{rname},\text{day}> \)?
How about a B+tree on \(<\text{day}, \text{rname}> \)?
How about a Hash index on \(<\text{day}, \text{rname}> \)?
Selections – 2nd approach: Intersecting RIDs

If we have 2 or more matching indexes (w/Alt. (2) or (3) for data entries):

1. Get \textit{sets of rids} of data records using each matching index
2. Then \textit{intersect} these \textit{sets of rids}
3. Retrieve the records and apply any remaining terms

\textbf{EXAMPLE:} Consider \textit{day}<8/9/94 AND bid=5 AND sid=3

- With (i) a B+ tree index on \textit{day} and (ii) an index on \textit{sid}:
 1. a) Retrieve rids of records satisfying \textit{day}<8/9/94 using the first
 b) Retrieve rids of recs satisfying \textit{sid}=3 using the second
 2. Intersect
 3. Retrieve records and check \textit{bid}=5
Selections: summary

Simple selections
- On sorted or unsorted data, with or without index

General selections
- Expressed in conjunctive normal form
- Retrieve tuples and then filter them through other conditions
- Intersect RIDs of matching tuples for non-clustered indexes

Choices depend on selectivities
Break: The Halloween Problem

Story from the early days of System R.

While testing the optimizer on 10/31/76(?), the following update was run:

```
UPDATE payroll
SET salary = salary*1.1
WHERE salary < 25K;
```

AND IT STOPPED WHEN ALL HAD salary ≥ 25K!

Can you guess why? (hint: it was an optimizer bug...)

Query Processing

Overview

Selections

Projections

Readings: Chapter 14.3

Nested loop joins

Sort-merge and hash joins

General joins and aggregates
The Projection Operation

Issue is removing duplicates

Basic approach is to use sorting
- 1. Scan R, extract only the needed attributes (why do this first?)
- 2. Sort the resulting set
- 3. Remove adjacent duplicates

Cost: Reserves with size ratio 0.25 = 250 pages
With 20 buffer pages can sort in 2 passes, so:
1000 + 250 + 2 * 2 * 250 + 250 = 2500 I/Os
Projection: Can do better!

Modify external sort algorithm (see chapter 13):

- Modify Pass 0 of external sort to eliminate unwanted fields
- Modify merging passes to eliminate duplicates
- **Cost** for above case:
 - read 1000 pages, write out 250 in runs of 40 pages,
 - merge runs = 1000 + 250 + 250 = 1500

```
SELECT DISTINCT
    R.sid, R.bid
FROM Reserves R
```
Projection Based on \textit{Hashing}

\textbf{Original Relation} \hspace{1cm} \textbf{OUTPUT} \hspace{1cm} \textbf{Partitions}

INPUT \hspace{1cm} \text{hash function } h_1 \hspace{1cm} 1 \hspace{1cm} 1

\[\begin{array}{cccc}
\text{Disk} & \text{B main memory buffers} & 2 & 2 \text{Disk}
\end{array} \]

\[\begin{array}{cccc}
\text{Disk} & \text{B main memory buffers} & \text{B-1} & \text{Disk}
\end{array} \]
Projection Based on **Hashing (explained)**

Partitioning phase:

– Read R using one input buffer

– For each tuple:

 • Discard unwanted fields

 • Apply hash function h_1 to choose one of B-1 output buffers

– Result is B-1 partitions (of tuples with no unwanted fields)

 • 2 tuples from different partitions guaranteed to be distinct
Projection Based on *Hashing* *(explained)*

Duplicate elimination phase:

– For each partition

 • Read it and build an in-memory hash table

 – using hash function $h2 (<> h1)$ on all fields

 • while discarding duplicates

– If partition does not fit in memory

 • Apply hash-based projection algorithm recursively to this partition
Projection Based on *Hashing* (*explained*)

Cost ???

- Assuming partitions fit in memory
 (i.e. \#bufs >= sqrt(#of pages))
- Read 1000 pages
- Write partitions of projected tuples (250 I/Os)
- Do duplicate elimination on each partition (total 250 I/Os)
- Total : 1500 I/Os
Discussion of Projection (1/2)

Sort-based approach is standard
 – Better handling of skew, and result is sorted

If there are enough buffers, both have same I/O cost:
 \[M + 2T \]

where:
 – \(M \) is \#pgs in \(R \),
 – \(T \) is \#pgs of \(R \) with unneeded attributes removed

Although many systems don’t use the specialized sort
Discussion of Projection (2/2)

If all wanted attributes are indexed

→ *index-only* scan

 – Apply projection techniques to data entries (much smaller!)

If all wanted attributes are indexed as prefix of the search key

→ even better:

 – Retrieve data entries in order (*index-only scan*)
 – Discard unwanted fields
 – Compare adjacent tuples to check for duplicates
Projections: summary

Projection based on *sorting*

Projection based on *hashing*

Can use *indexes* if they cover *relevant attributes*
Query Processing

Overview

Selections

Projections

Nested loop joins
Readings: Chapters 14.4-14.4.1

Sort-merge and hash joins

General joins and aggregates
Joins...

...are very common.
...can be very expensive (cross product in the worst case).

➤ Many approaches to reduce join cost!

Join techniques we will cover:

1. Nested-loops join
2. Index-nested loops join
3. Sort-merge join
4. Hash join
Equality Joins With One Join Column

```
SELECT * 
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid
```

In algebra: $R \bowtie S$. Common! Must be carefully optimized. $R \times S$ is large; so, $R \times S$ followed by a selection is inefficient

Remember, join is associative and commutative

Assume:

- M pages in R, p_R tuples per page
- N pages in S, p_S tuples per page
- In our examples, R is Reserves and S is Sailors

We will consider more complex join conditions later

Cost metric: # of I/Os

We will ignore output costs
Simple Nested Loops Join

For each tuple in the *outer* relation R, we scan the entire *inner* relation S

How much does this Cost?

\[(p_R \times M) \times N + M = 100 \times 1000 \times 500 + 1000 \text{ I/Os}\]

– At 10ms/IO, Total: 1,000,500,100 ms

What if smaller relation (S) was outer?

What assumptions are being made here?

Q: What is cost if one relation can fit entirely in memory?
Page-Oriented Nested Loops Join

foreach page \(b_R \) in \(R \) do
 foreach page \(b_S \) in \(S \) do
 foreach tuple \(r \) in \(b_R \) do
 foreach tuple \(s \) in \(b_S \) do
 if \(r_i \) == \(s_j \) then add \(<r, s>\) to result

For each page of \(R \)
- get each page of \(S \)
- write out matching pairs of tuples \(<r, s>\), where \(r \) is in \(R \)-page and \(S \) is in \(S \)-page

What is the cost of this approach?

\[M \times N + M = 1000 \times 500 + 1000 \]
- If smaller relation \((S) \) is outer, cost = 500 \times 1000 + 500
Index Nested Loops Join

foreach tuple \(r \) in \(R \) do
 foreach tuple \(s \) in \(S \) where \(r_i == s_j \) do
 add \(\langle r, s \rangle \) to result

If there is an index on the join column of one relation (say \(S \)), can make it the inner and exploit the index

 – Cost: \(M + (M \cdot p_R) \cdot \text{cost of finding matching } S \text{ tuples} \)

For each \(R \) tuple, cost of probing \(S \) index is about 1.2 for hash index, 2-4 for B+ tree. Cost of then finding \(S \) tuples (assuming Alt. (2) or (3) for data entries) depends on clustering

Clustered index: 1 I/O per page of matching \(S \) tuples
Unclustered: up to 1 I/O per matching \(S \) tuple
Examples of Index Nested Loops (1/2)

Hash-index (Alt. 2) on \(sid \) of Sailors (inner):

- Scan Reserves: 1000 page I/Os, 100*1000 tuples

- For each Reserves tuple:
 - 1.2 I/Os to get data entry in index,
 - plus 1 I/O to get (the exactly one) matching Sailors tuple
Examples of Index Nested Loops (2/2)

Hash-index (Alt. 2) on sid of Reserves (inner):

- Scan Sailors: 500 page I/Os, 80*500 tuples
- For each Sailors tuple:
 - 1.2 I/Os to find index page with data entries,
 - plus cost of retrieving matching Reserves tuples
 - Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os depending on whether the index is clustered
Block Nested Loops Join

Page-oriented NL doesn't exploit extra buffers

Alternative approach: Use one page as an input buffer for scanning the inner S, one page as the output buffer, and use all remaining pages to hold ‘block’ of outer R

For each matching tuple r in R-block, s in S-page, add <r, s> to result. Then read next R-block, scan S, etc
Examples of Block Nested Loops

Cost: Scan of outer + #outer blocks * scan of inner

- #outer blocks = \(\lceil \frac{\text{# of pages of outer}}{\text{blocksize}} \rceil \)

With Reserves (R) as outer, and 100 pages of R:
- Cost of scanning R is 1000 I/Os; a total of 10 blocks
- Per block of R, we scan Sailors (S); 10*500 I/Os

With 100-page block of Sailors as outer:
- Cost of scanning S is 500 I/Os; a total of 5 blocks
- Per block of S, we scan Reserves; 5*1000 I/Os

With **sequential reads** considered, analysis changes: may be best to divide buffers evenly between R and S
Nested loop joins: summary

Simple nested loops
- Optimized by page-oriented access

Index nested loops
- Costs depend on the type of index

Block nested loops
- Optimization of page nested loops which uses memory buffers
Query Processing

Overview

Selections

Projections

Nested loop joins

Sort-merge and hash joins
 Readings: Chapters 14.4.2-14.4.3

General joins and aggregates
Sort-Merge Join \((R \bowtie_j S)\)

Sort \(R\) and \(S\) on the join column, then scan them to do a ‘merge’ (on join column), and output result tuples

Useful if

- one or both inputs are already sorted on join attribute(s)
- output is required to be sorted on join attributes(s)

‘Merge’ phase can require some back tracking if duplicate values appear in join column

\(R\) is scanned once; each \(S\) group is scanned once per matching \(R\) tuple. Note: Multiple scans of an \(S\) group will probably find needed pages in buffer
Example of Sort-Merge Join

Cost: \[\text{Sort R} + \text{Sort S} + (M+N) \]
- The cost of scanning, M+N, could be M*N (very unlikely!)

With 35, 100 or 300 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost: \[2 \times \#\text{passes} \times (M+N)+(M+N) = 7500 \]

(BNL cost: 2500 to 15000 I/Os)
Refinement of Sort-Merge Join

We can combine the merging phases in the sorting of R and S with the merging required for the join

- Allocate 1 page per run of each relation, and ‘merge’ while checking the join condition
- With \(B > \sqrt{L} \), where \(L \) is the size of the larger relation, using the sorting refinement that produces runs of length \(2B \) in Pass 0, #runs of each relation is < \(B/2 \)
- **Cost:** read+write each relation in Pass 0 + read each relation in (only) merging pass (+ writing of result tuples)
- In example, cost goes down from 7500 to 4500 I/Os
Hash-Join

Partition both relations using hash function h: R tuples in partition i will only match S tuples in partition i

Read in a partition of R, hash it using h_2 ($\neq h$). Scan matching partition of S, probe hash table for matches
Observations on Hash-Join

First pass creates B-1 partitions, each of size \(S_i = \frac{N}{B-1} \)

Need each \(S_i \leq B-2 \) in order to fit in memory for 2nd pass

\[\Rightarrow \text{Need } \frac{N}{(B-1)} \leq B-2 \]

... or, roughly: \(B > \sqrt{N} \)

where \(N \) is size of smaller relation
More Observations on Hash-Join

Since we build an in-memory hash table to speed up the matching of tuples in the second phase, a little more memory is needed.

If the hash function does not partition uniformly, one or more R partitions may not fit in memory. We can apply hash-join technique recursively to do the join of this R-partition with corresponding S-partition.
Cost of Hash-Join

In partitioning phase, read and write both relations; \(2(M+N)\)

In matching phase, read both relations; \(M+N\) I/Os

In our running example, this is a total of 4500 I/Os
Sort-Merge Join vs. Hash Join

Given a minimum amount of memory (what is this, for each?) both have a cost of $3(M+N)$ I/Os

Hash Join Pros:
- Superior if relation sizes differ greatly
- Shown to be highly parallelizable (beyond scope of class)

Sort-Merge Join Pros:
- Less sensitive to data skew
- Result is sorted (may help “upstream” operators)
- Goes faster if one or both inputs already sorted
Hash-Join

Let $B = 5$

Buckets:
- $b1: h \in [1, 25]$
- $b2: h \in [26, 50]$
- $b3: h \in [51, 75]$
- $b4: h \in [76, 100]$

If $|F| \leq |M|$, in second phase build in-memory hash table on F partitions, and stream M partitions through memory.
Summary

Sort merge join
- Relies on the sorted order of join attributes
- Produces sorted output

Hash join
- Uses little memory
- Great when one relations is much smaller than the other
- Has problems with data skew
Query Processing

Overview

Selections

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates

Readings: Chapters 14.4.5-14.7
General Join Conditions

Equalities over several attributes (e.g., $R.sid=S.sid$ and $R.rname=S.sname$):

- For Index NL, build index on $<sid, sname>$ (if S is inner); or use existing indexes on sid or sname
- For Sort-Merge and Hash Join, sort/partition on combination of the two join columns

Inequality conditions (e.g., $R.rname < S.sname$):

- For Index NL, need (clustered!) B+ tree index
 - Range probes on inner; # matches likely to be much higher than for equality joins
- Hash Join, Sort Merge Join not applicable!
- Block NL quite likely to be the best join method here
Set Operations

Intersection and cross-product special cases of join

Union (Distinct) and Except similar; we’ll do union:

Sorting based approach to union:
- Sort both relations (on combination of all attributes)
- Scan sorted relations and merge them
- Alternative: Merge runs from Pass 0 for both relations

Hash based approach to union:
- Partition R and S using hash function h
- For each S-partition, build in-memory hash table (using $h2$), scan corresponding R-partition and add tuples to table while discarding duplicates
Aggregate Operations (AVG, MIN, etc.)

Without grouping:

- In general, requires scanning the relation
- Given index whose search key includes all attributes in the SELECT or WHERE clauses, can do index-only scan
Aggregate Operations (AVG, MIN, etc.)

With grouping:

- Sort on group-by attributes, then scan relation and compute aggregate for each group. Note: we can improve upon this by combining sorting and aggregate computation
- Similar approach based on hashing on group-by attributes
- Given tree index whose search key includes all attributes in SELECT, WHERE and GROUP BY clauses, we can do index-only scan
- If group-by attributes form prefix of the search key, we can retrieve data entries/tuples in group-by order
Impact of Buffering

If several operations are executing concurrently, estimating the number of available buffer pages is guesswork.

Repeated access patterns interact with buffer replacement policy

- e.g., Inner relation is scanned repeatedly in Simple Nested Loop Join. With enough buffer pages to hold inner, replacement policy does not matter. Otherwise, MRU is best, LRU is worst (sequential flooding)
- Does replacement policy matter for Block Nested Loops?
- What about Index Nested Loops?
Summary

A virtue of relational DBMSs:

- queries are composed of a few basic operators
 - Implementation of operators can be carefully tuned
 - Important to do this!

Many alternative implementations for each operator
 - No universally superior technique for most operators

Must consider alternatives for each operation in a query and choose best one based on system statistics...
 - Part of the broader task of optimizing a query composed of several operators